
The build2 Build Bot

Copyright © 2014-2019 Code Synthesis Ltd

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.11, June 2019

This revision of the document describes the build2 build bot 0.11.x series.

Table of Contents

.................. 1Preface

................. 11 Introduction

................. 12 Architecture

............... 22.1 Configurations

............ 32.2 Machine Header Manifest

................ 42.2.1 id

............... 42.2.2 name

.............. 42.2.3 summary

.............. 42.3 Machine Manifest

............... 42.3.1 type

............... 42.3.2 mac

.............. 52.3.3 options

.............. 52.3.4 changes

............... 52.4 Task Manifest

............... 62.4.1 name

.............. 62.4.2 version

............ 62.4.3 repository-url

........... 62.4.4 repository-type

............... 62.4.5 trust

.............. 72.4.6 machine

.............. 72.4.7 target

.............. 72.4.8 config

............ 72.4.9 warning-regex

.............. 82.5 Result Manifest

............... 82.5.1 name

.............. 82.5.2 version

.............. 82.5.3 status

.............. 92.5.4 *-status

............... 92.5.5 *-log

............. 92.6 Task Request Manifest

............... 102.6.1 agent

............ 102.6.2 toolchain-name

........... 102.6.3 toolchain-version

............. 102.6.4 fingerprint

............ 102.7 Task Response Manifest

.............. 102.7.1 session

............. 112.7.2 challenge

............. 112.7.3 result-url

............ 112.8 Result Request Manifest

.............. 112.8.1 session

............. 112.8.2 challenge

............... 112.9 Worker Logic

.............. 132.10 Controller Logic

iRevision 0.11, June 2019 The build2 Build Bot

Table of Contents

Preface

This document describes bbot, the build2 build bot. For the build bot command line inter­

face refer to the bbot-agent(1) and bbot-worker(1) man pages.

1 Introduction

2 Architecture

The bbot architecture includes several layers for security and manageability. At the top we

have a bbot running in the controller mode. The controller monitors various build sources

for build tasks. For example, a controller may poll a brep instances for any new packages to

built as well as monitor a git repository for any new commits to test. There can be several

layers of controllers with brep being just a special kind. A machine running a bbot instance

in the controller mode is called a controller host.

Below the controllers we have a bbot running in the agent mode normally on Build OS. The

agent polls its controllers for build tasks to perform. A machine running a bbot instance in

the agent mode is called a build host.

The actual building is performed in the virtual machines and/or containers that are executed

on the build host. Inside virtual machines/containers, bbot is running in the worker mode and

receives build tasks from its agent. Virtual machines and containers running a bbot instance

in the worker mode are collectively called build machines.

Let’s now examine the workflow in the other direction, that is, from a worker to a controller.

Once a build machine is booted (by the agent), the worker inside connects to the TFTP server

running on the build host and downloads the build task manifest. It then proceeds to perform

the build task and uploads the build result manifest (which includes build logs) to the TFTP

server.

Once an agent receives a build task for a specific build machine, it goes through the following

steps. First, it creates a directory on its TFTP server with the machine name as its name and

places the build task manifest inside. Next, it makes a throw-away snapshot of the build

machine and boots it. After booting the build machine, the agent monitors the machine direc­

tory on its TFTP server for the build result manifest (uploaded by the worker once the build

has completed). Once the result manifest is obtained, the agent shuts down the build machine

and discards its snapshot.

To obtains a build task the agent polls via HTTP/HTTPS one or more controllers. Before each

poll request the agent enumerates the available build machines and sends this information as

part of the request. The controller responds with a build task manifest that identifies a specific

build machine to use.

1Revision 0.11, June 2019 The build2 Build Bot

Preface

If the controller has higher-level controllers (for example, brep), then it aggregates the avail­

able build machines from its agents and polls these controllers (just as an agent would),

forwarding build tasks to suitable agents. In this case we say that the controller act as an

agent. The controller may also be configured to monitor build sources, such as SCM reposito­

ries, directly in which case it generates build tasks itself.

In this architecture the build results are propagated up the chain: from a worker, to its agent,

to its controller, and so on. A controller that is the final destination of a build result uses email

to notify interested parties of the outcome. For example, brep would send a notification to

the package owner if the build failed. Similarly, a bbot controller that monitors a git repos­

itory would send an email to a committer if their commit caused a build failure. The email

would include a link (normally HTTP/HTTPS) to the build logs hosted by the controller.

2.1 Configurations

The bbot architecture distinguishes between a machine configuration and a build configura­

tion. The machine configuration captures the operating system, installed compiler toolchain,

and so on. The same build machine may be used to "generate" multiple build configurations.

For example, the same machine can normally be used to produce 32/64-bit and debug/opti­

mized builds.

The machine configuration is approximately encoded in its machine name. The machine name

is a list of components separated with -. Components cannot be empty and must contain only

alpha-numeric characters, underscores, dots, and pluses with the whole id being a

portably-valid path component.

The encoding is approximate in a sense that it captures only what’s important to distinguish in

a particular bbot deployment.

The first component normally identifies the operating system and has the following recom­

mended form:

[<arch>_][<class>_]<os>[_<version>]

For example:

windows
windows_10
windows_10.1607
i686_windows_xp
bsd_freebsd_10
linux_centos_6.2
linux_ubuntu_16.04
macos_10.12

The second component normally identifies the installed compiler toolchain and has the

following recommended form:

Revision 0.11, June 20192 The build2 Build Bot

2.1 Configurations

<id>[<version>][<vendor>][<runtime>]

For example:

gcc
gcc_6
gcc_6.3
gcc_6.3_mingw_w64
clang_3.9_libc++
clang_3.9_libstdc++
msvc_14
msvc_14u3
icc

Some examples of complete machine names:

windows_10-msvc_14u3
macos_10.12-clang_10.0
linux_ubuntu_16.04-gcc_6.3

Similarly, the build configuration is encoded in a configuration name using the same format.

As described in Controller Logic, build configurations are generated from machine configura­

tions. As a result, it usually makes sense to have the first component identify the operating

systems and the second component – the toolchain with the rest identifying a particular build

configuration variant, for example, optimized, sanitized, etc. For example:

windows-vc_14-O2
linux-gcc_6-O3_asan

2.2 Machine Header Manifest

@@ TODO: need ref to general manifest overview in bpkg, or, better yet, move it to libbutl

and ref to that from both places.

The build machine header manifest contains basic information about a build machine on the

build host. A list of machine header manifests is sent by bbot agents to controllers. The

manifest synopsis is presented next followed by the detailed description of each value in

subsequent sections.

id: <machine-id>
name: <machine-name>
summary: <string>

For example:

id: windows_10-msvc_14-1.3
name: windows_10-msvc_14
summary: Windows 10 build 1607 with VC 14 update 3

3Revision 0.11, June 2019 The build2 Build Bot

2.2 Machine Header Manifest

2.2.1 id

id: <machine-id>

The uniquely machine version/revision/build identifies. For virtual machines this can be the

disk image checksum. For a container this can be UUID that is re-generated every time a

container filesystem is altered.

2.2.2 name

name: <machine-name>

The machine name.

2.2.3 summary

summary: <string>

The one-line description of the machine.

2.3 Machine Manifest

The build machine manifest contains the complete description of a build machine on the build

host (see the Build OS documentation for their origin and location). The machine manifest

starts with the machine manifest header with all the header values appearing before any

non-header values. The non-header part of manifest synopsis is presented next followed by

the detailed description of each value in subsequent sections.

type: kvm|nspawn
[mac]: <addr>
[options]: <machine-options>
[changes]: <text>

2.3.1 type

type: kvm|nspawn

The machine type. Valid values are kvm (QEMU/KVM virtual machine) and nspawn

(systemd-nspawn container).

2.3.2 mac

[mac]: <addr>

The fixed MAC address for the machine. Must be in the hexadecimal, comma-separated

format. For example:

mac: de:ad:be:ef:de:ad

Revision 0.11, June 20194 The build2 Build Bot

2.3 Machine Manifest

If it is not specified, then a random address is generated on the first machine bootstrap which

is then reused for each build/re-bootstrap. Note that if you specify a fixed address, then the

machine can only be used by a single bbot agent.

2.3.3 options

[options]: <machine-options>

The list of machine options. The exact semantics is machine type-dependent (see below). A

single level of quotes (either single or double) is removed in each option before being passed

on. Options can be separated with spaces or newlines.

For kvm machines, if this value is present, then it replaces the default network and disk

configuration when starting the QEMU/KVM hypervisor. The options are pre-processed by

replacing the question mark in ifname=? and mac=? strings with the network interface and

MAC address, respectively.

2.3.4 changes

[changes]: <text>

The description of machine changes in this version.

Multiple changes values can be present which are all concatenated in the order specified,

that is, the first value is considered to be the most recent. For example:

changes: 1.1: initial version
changes: 1.2: increased disk size to 30GB

Or:

changes:\
1.1
 - initial version

1.2
 - increased disk size to 30GB
 - upgraded bootstrap baseutils
\

2.4 Task Manifest

The task manifest describes a build task. It consists of two groups of values. The first group

defines the package to build. The second group defines the build configuration to use for

building the package. The manifest synopsis is presented next followed by the detailed

description of each value in subsequent sections.

5Revision 0.11, June 2019 The build2 Build Bot

2.4 Task Manifest

name: <package-name>
version: <package-version>
#location: <package-url>
repository-url: <repository-url>
[repository-type]: pkg|git|dir
[trust]: <repository-fp>

machine: <machine-name>
target: <target-triplet>
[config]: <config-args>
[warning-regex]: <warning-regex>

2.4.1 name

name: <package-name>

The package name to build.

2.4.2 version

version: <package-version>

The package version to build.

2.4.3 repository-url

repository-url: <repository-url>

The URL of the repository that contains the package and its dependencies.

2.4.4 repository-type

[repository-type]: pkg|git|dir

The repository type (see repository-url for details). Alternatively, the repository type

can be specified as part of the URL scheme. See bpkg-repository-types(1) for

details.

2.4.5 trust

[trust]: <repository-fp>

The SHA256 repository certificate fingerprint to trust (see the bpkg --trust option for

details). This value may be specified multiple times to establish the authenticity of multiple

certificates. If the special yes value is specified, then all repositories will be trusted without

authentication (see the bpkg --trust-yes option).

Note that while the controller may return a task with trust values, whether they will be used

is up to the agent’s configuration. For example, some agents may only trust their inter­

nally-specified fingerprints to prevent the "man in the middle" attacks.

Revision 0.11, June 20196 The build2 Build Bot

2.4.1 name

2.4.6 machine

machine: <machine-name>

The name of the build machine to use.

2.4.7 target

target: <target-triplet>

The target to build for.

Compared to the autotools terminology, the machine value corresponds to --build (the

machine we are building on) and target – to --host (the machine we are building for).

While we use essentially the same target triplet format as autotools for target, it is not

flexible enough for machine.

2.4.8 config

[config]: <config-args>

The additional configuration options and variables. A single level of quotes (either single or

double) is removed in each value before being passed to bpkg. For example, the following

value:

config: config.cc.coptions="-O3 -stdlib=’libc++’"

Will be passed to bpkg as the following (single) argument:

config.cc.coptions=-O3 -stdlib=’libc++’

Values can be separated with spaces or newlines. See Controller Logic for details.

2.4.9 warning-regex

[warning-regex]: <warning-regex>

Additional regular expressions that should be used to detect warnings in the build logs. Note

that only the first 512 bytes of each log line is considered.

A single level of quotes (either single or double) is removed in each expression before being

used for search. For example, the following value:

warning-regex: "warning C4\d{3}: "

Will be treated as the following (single) regular expression (with a trailing space):

warning C4\d{3}:

7Revision 0.11, June 2019 The build2 Build Bot

2.4.6 machine

Expressions can be separated with spaces or newlines. They will be added to the following

default list of regular expressions that detect the build2 toolchain warnings:

^warning:
^.+: warning:

Note that this built-in list also covers GCC and Clang warnings (for the English locale).

2.5 Result Manifest

The result manifest describes a build result. The manifest synopsis is presented next followed

by the detailed description of each value in subsequent sections.

name: <package-name>
version: <package-version>

status: <status>
[configure-status]: <status>
[update-status]: <status>
[test-status]: <status>
[install-status]: <status>
[test-installed-status]: <status>
[uninstall-status]: <status>

[configure-log]: <text>
[update-log]: <text>
[test-log]: <text>
[install-log]: <text>
[test-installed-log]: <text>
[uninstall-log]: <text>

2.5.1 name

name: <package-name>

The package name from the task manifest.

2.5.2 version

version: <package-version>

The package version from the task manifest.

2.5.3 status

status: <status>

The overall (cumulative) build result status. Valid values are:

success # All operations completed successfully.
warning # One or more operations completed with warnings.
error # One or more operations completed with errors.
abort # One or more operations were aborted.
abnormal # One or more operations terminated abnormally.

Revision 0.11, June 20198 The build2 Build Bot

2.5 Result Manifest

The abort status indicates that the operation has been aborted by bbot, for example,

because it was consuming too many resources and/or was taking too long. Note that a task can

be aborted both by the bbot worker as well as the agent. In the later case the whole machine

is shut down and no operation-specific status or logs will be included (@@ Maybe we should

just include ’log:’ with commands that start VM, for completeness?).

The abnormal status indicates that the operation has terminated abnormally, for example,

due to the package manager or build system crash.

Note that the overall status value should appear before any per-operation *-status

values.

2.5.4 *-status

[*-status]: <status>

The per-operation result status. Note that the *-status values should appear in the same

order as the corresponding operations were performed and for each *-status there should

be the corresponding *-log value. Currently supported operation names:

configure
update
test
install
test-installed
uninstall

2.5.5 *-log

[*-log]: <text>

The per-operation result log. Note that the *-log values should appear last and in the same

order as the corresponding *-status values. For the list of supported operation names refer

to the *-status value description.

2.6 Task Request Manifest

An agent (or controller acting as an agent) sends a task request to its controller via

HTTP/HTTPS POST method (@@ URL/API endpoint). The task request starts with the task

request manifest followed by a list of machine manifests. The task request manifest synopsis

is presented next followed by the detailed description of each value in subsequent sections.

agent: <name>
toolchain-name: <name>
toolchain-version: <standard-version>
[fingerprint]: <agent-fingerprint>

9Revision 0.11, June 2019 The build2 Build Bot

2.6 Task Request Manifest

2.6.1 agent

agent: <name>

The name of the agent host (hostname). The name should be unique in a particular bbot

deployment.

2.6.2 toolchain-name

toolchain-name: <name>

The build2 toolchain name being used by the agent.

2.6.3 toolchain-version

toolchain-version: <standard-version>

The build2 toolchain version being used by the agent.

2.6.4 fingerprint

[fingerprint]: <agent-fingerprint>

The SHA256 fingerprint of the agent’s public key. An agent may be configured not to use the

public key-based authentication in which case it does not include this value. However, the

controller may be configured to require the authentication in which case it should respond

with the 401 (unauthorized) HTTP status code.

2.7 Task Response Manifest

A controller sends the task response manifest in response to the task request initiated by an

agent. The response is delivered as a result of the POST method. The task response starts with

the task response manifest optionally followed by the task manifest. The task response mani­

fest synopsis is presented next followed by the detailed description of each value in subse­

quent sections.

session: <id>
[challenge]: <text>
[result-url]: <url>

2.7.1 session

session: <id>

The identifier assigned to this session by the controller. An empty value indicates that the

controller has no tasks at this time in which case all the following values as well as the task

manifest are absent.

Revision 0.11, June 201910 The build2 Build Bot

2.7 Task Response Manifest

2.7.2 challenge

[challenge]: <text>

The random, 64 characters long string (nonce) used to challenge the agent’s private key. If

present, then the agent must sign this string and include the signature in the result request (see

below).

The signature should be calculated by encrypting the string with the agent’s private key and

then base64-encoding the result.

2.7.3 result-url

[result-url]: <url>

The URL to POST (upload) the result request to.

2.8 Result Request Manifest

On completion of a task an agent (or controller acting as an agent) sends the result (upload)

request to the controller via the POST method using the URL returned in the task response

(see above). The result request starts with the result request manifest followed by the result

manifest. Note that there is no result response and only a successful but empty POST result is

returned. The result request manifest synopsis is presented next followed by the detailed

description of each value in subsequent sections.

session: <id>
[challenge]: <text>

2.8.1 session

session: <session-id>

The session id as returned by the controller in the task response.

2.8.2 challenge

[challenge]: <text>

The answer to the private key challenge as posed by the controller in the task response. It

must be present only if the challenge value was present in the task response.

2.9 Worker Logic

The bbot worker builds each package in a build environment that is established for a particu­

lar build target. The environment has three components: the execution environment (environ­

ment variables, etc), build system modules, as well as configuration options and variables.

11Revision 0.11, June 2019 The build2 Build Bot

2.8 Result Request Manifest

Setting up of the environment is performed by an executable (script, batch file, etc). Specifi­

cally, upon receiving a build task, the worker obtains its target and looks for the environment

setup executable with this name in a specific directory. If not found, then the worker looks for

the executable called default. Not being able to locate the environment executable is an

error.

Once the environment setup executable is determined, the worker re-executes itself as that

executable passing to it as command line arguments the target name, the path to the bbot
worker to be executed once the environment is setup, and any additional options that need to

be propagated to the re-executed worker. The environment setup executable is executed in the

build directory as its current working directory. The build directory contains the build task

task.manifest file.

The environment setup executable sets up the necessary execution environment for example

by adjusting PATH or running a suitable vcvars batch file. It then re-executes itself as the

bbot worker passing to it as command line arguments (in addition to worker options) the list

of build system modules (<env-modules>) and the list of configuration options and vari­

ables (<env-config-args>). The environment setup executable must execute the bbot
worker in the build directory as the current working directory.

The re-executed bbot worker then proceeds to test the package from the repository by

executing the following commands, collectively called a worker script. Each command has a

unique step id that can be used as a prefix in the <config-args>,

<env-config-args>, and <env-modules> values as discussed in Controller Logic.

The <>-values are from the task manifest and the environment:

bpkg.configure.create
#
bpkg -v create <config-args> <env-modules> <env-config-args>

bpkg.configure.add
#
bpkg -v add <repository-url>

bpkg.configure.fetch
#
bpkg -v fetch --trust <repository-fp>

bpkg.configure.build
#
bpkg -v build --yes --configure-only <package-name>/<package-version>

bpkg.update.update
#
bpkg -v update <package-name>

if the test operation is supported by the package:
#
bpkg.test.test
#
bpkg -v test <package-name>

if config.install.root is specified:
#

Revision 0.11, June 201912 The build2 Build Bot

2.9 Worker Logic

{
 # bpkg.install.install
 #
 bpkg -v install <package-name>

 # if the package contains subprojects that support the test operation:
 #
 {
 # b.test-installed.create
 #
 b -v create <config-args> <env-modules> <env-config-args>

 # b.test-installed.configure
 #
 b -v configure

 # b.test-installed.test
 #
 b -v test
 }
}

bpkg.uninstall.uninstall
#
bpkg -v uninstall <package-name>

For details on configuring and testing installation refer to Controller Logic.

As an example, the following POSIX shell script can be used to setup the environment for

building C and C++ packages with GCC 6 on most Linux distributions.

#!/bin/sh

Environment setup script for C/C++ compilation with GCC 6.
#
$1 - target
$2 - bbot executable
$3+ - bbot options

set -e # Exit on errors.

t="$1"
shift

if test -n "$t"; then
 echo "unknown target: $t" 1>&2
 exit 1
fi

exec "$@" cc config.c=gcc-6 config.cxx=g++-6

2.10 Controller Logic

A bbot controller that issues own build tasks maps available build machines (as reported by

agents) to build configurations according to the buildtab configuration file. Blank lines

and lines that start with # are ignored. All other lines in this file have the following format:

13Revision 0.11, June 2019 The build2 Build Bot

2.10 Controller Logic

<machine-pattern> <config> <target> <classes> [<config-arg>]* [<warning-regex>]*

<config-arg> = [<prefix>:](<variable>|<option>)
<prefix> = <tool>[.<operation>[.<command>]]

Where <machine-pattern> is filesystem wildcard pattern that is matched against avail­

able machine names, <config> is the configuration name, <target> is the build target,

<classes> is a space-separated list of configuration classes that is matched against the

package builds values, optional <config-arg> list is additional configuration options

and variables, and optional <warning-regex> list is additional regular expressions that

should be used to detect warnings in the logs.

The build configurations can belong to multiple classes with their names reflecting some

common configuration aspects, such as the operating system, compiler, build options, etc.

Predefined class names are default, all, and none. The default configurations are built

by default. A configuration must also belong to the all unless it is hidden. Valid custom

class names must contain only alpha-numeric characters, _, +, -, and ., except as the first

character for the last three. Class names that start with _ are reserved for the future

hidden/special class functionality.

Regular expressions must start with ~, to be distinguished from configuration options and

variables. Note that the <config-arg> and <warning-regex> lists have the same

quoting semantics as in the config and the warning-regex value in the build task mani­

fest. The matched machine name, the target, configuration options/variables, and regular

expressions are included into the build task manifest.

Values in the <config-arg> list can be opionally prefixed with the step id or a leading

portion thereof to restrict it to a specific step, operation, or tool in the worked script (see

Worker Logic). Unprefixed values only apply to the bpkg.configure.create and

b.test-installed.create steps. Note that options with values can only be specified

using the single argument notation. For example:

bpkg:--fetch-timeout=600 bpkg.configure.fetch:--fetch-timeout=60 b:-j1

Note that each machine name is matched against every pattern and all the patterns that match

produce a configuration. If a machine does not match any pattern, then it is ignored (meaning

that this controller is not interested in testing its packages with this machine). If multiple

machines match the same pattern, then only a single configuration using any of the machines

is produced (meaning that this controller considers these machines equivalent).

As an example, let’s say we have a machine named windows_10-vc_14u3. If we wanted

to test both 32 and 64-bit as well as debug and optimized builds, then we could have gener­

ated the following configurations:

windows*-msvc_14* windows-msvc_14-32-Z7 i686-microsoft-win32-msvc14.0 "all default msvc i686 debug" config.cc.coptions=/Z7 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-32-O2 i686-microsoft-win32-msvc14.0 "all default msvc i686 optimized" config.cc.coptions=/O2 ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-64-Z7 x86_64-microsoft-win32-msvc14.0 "all default msvc x86_64 debug" config.cc.coptions=/Z7 config.cc.loptions=/DEBUG ~"warning C4\d{3}: "

windows*-msvc_14* windows-msvc_14-64-O2 x86_64-microsoft-win32-msvc14.0 "all default msvc x86_64 optimized" config.cc.coptions=/O2 ~"warning C4\d{3}: "

Revision 0.11, June 201914 The build2 Build Bot

2.10 Controller Logic

As another example, let’s say we have linux_fedora_25-gcc_6 and

linux_ubuntu_16.04-gcc_6. If all we cared about is testing GCC 6 64-bit builds on

Linux, then our configurations could look like this:

linux*-gcc_6 linux-gcc_6-g x86_64-linux-gnu "all default gcc debug" config.cc.coptions=-g

linux*-gcc_6 linux-gcc_6-O3 x86_64-linux-gnu "all default gcc optimized" config.cc.coptions=-O3

A build configuration class can derive from another class in which case configurations that

belong to the derived class are treated as also belonging to the base class (or classes, recur­

sively). The derived and base class names are separated with : (no leading or trailing spaces

allowed) and the base must be present in the first mentioning of the derived class. For

example:

linux*-gcc_6 linux-gcc_6-g x86_64-linux-gnu "all gcc-6+ debug" config.cc.coptions=-g

linux*-gcc_6 linux-gcc_6-O3 x86_64-linux-gnu "all gcc-6+ optimized" config.cc.coptions=-O3

linux*-gcc_7 linux-gcc_7-g x86_64-linux-gnu "all gcc-7+:gcc-6+ debug" config.cc.coptions=-g

linux*-gcc_7 linux-gcc_7-O3 x86_64-linux-gnu "all gcc-7+ optimized" config.cc.coptions=-O3

A machine pattern consisting of a single - is a placeholder entry. Everything about a place­

holder is ignored except for the class inheritance information. Note, however, that while all

other information is ignored, the configuration name and target must be present but can also

be -. For example:

linux*-gcc_6 linux-gcc_6 x86_64-linux-gnu "all gcc-6+ "
- - - " gcc-7+:gcc-6+"
linux*-gcc_8 linux-gcc_8 x86_64-linux-gnu "all gcc-8+:gcc-7+"

If the <config-arg> list contains the config.install.root variable that applies to

the bpkg.configure.create step, then in addition to building and possibly running

tests, the bbot worker will also test installing and uninstalling each package. Furthermore, if

the package contains subprojects that support the test operation, then the worker will addition­

ally build such subprojects against the installation and run their tests.

Two types of installations can be tested: system and private. A system installation uses a

well-known location, such as /usr or /usr/local, that will be searched by the compiler

toolchain by default. A private installation uses a private directory, such as /opt, that will

have to be explicitly mentioned to the compiler. While the system installation is usually

preferable, it may not be always usable because of the potential conflicts with the already

installed software, for example, by the system package manager.

As an example, the following two configurations could be used to test system and private

installations:

linux*-gcc* linux-gcc-sysinstall x86_64-linux-gnu "all default gcc" config.install.root=/usr config.install.sudo=sudo

linux*-gcc* linux-gcc-prvinstall x86_64-linux-gnu "all default gcc" config.install.root=/tmp/install config.cc.poptions=-I/tmp/install/include config.cc.loptions=-L/tmp/install/lib config.bin.rpath=/tmp/install/lib

Note also that while building and running tests against the installation the worker makes the

bin subdirectory of config.install.root the first entry in the PATH environment

variable.

15Revision 0.11, June 2019 The build2 Build Bot

2.10 Controller Logic

	Preface
	1 Introduction
	2 Architecture
	2.1 Configurations
	2.2 Machine Header Manifest
	2.2.1 id
	2.2.2 name
	2.2.3 summary

	2.3 Machine Manifest
	2.3.1 type
	2.3.2 mac
	2.3.3 options
	2.3.4 changes

	2.4 Task Manifest
	2.4.1 name
	2.4.2 version
	2.4.3 repository-url
	2.4.4 repository-type
	2.4.5 trust
	2.4.6 machine
	2.4.7 target
	2.4.8 config
	2.4.9 warning-regex

	2.5 Result Manifest
	2.5.1 name
	2.5.2 version
	2.5.3 status
	2.5.4 *-status
	2.5.5 *-log

	2.6 Task Request Manifest
	2.6.1 agent
	2.6.2 toolchain-name
	2.6.3 toolchain-version
	2.6.4 fingerprint

	2.7 Task Response Manifest
	2.7.1 session
	2.7.2 challenge
	2.7.3 result-url

	2.8 Result Request Manifest
	2.8.1 session
	2.8.2 challenge

	2.9 Worker Logic
	2.10 Controller Logic

